Comparative Analysis of SNR for Image Sensors with Enhanced Dynamic Range
نویسندگان
چکیده
Dynamic range is a critical gure of merit for image sensors. Often a sensor with higher dynamic range is regarded as higher quality than one with lower dynamic range. For CCD and CMOS sensors operating in the integration mode the sensor SNR monotonically increases with the signal. Therefore, a sensor with higher dynamic range, generally, produces higher quality images than one with lower dynamic range. This, however, is not necessarily the case when dynamic range enhancement schemes are used. For example, using the well capacity adjusting scheme dynamic range is enhanced but at the expense of substantial degradation in SNR. On the other hand, using multiple sampling dynamic range can be enhanced without degrading SNR. Therefore, even if both schemes achieve the same dynamic range the latter can produce higher image quality than the former. The paper provides a quantitative framework for comparing SNR for image sensors with enhanced dynamic range. We introduce a simple model to describe the sensor output response as a function of the photogenerated signal, dark signal, and noise for sensors operating in integration mode with and without dynamic range enhancement schemes. We use the model to quantify and compare dynamic range and SNR for three sensor operation modes, integration with shuttering, using the well capacity adjusting scheme, and using multiple sampling.
منابع مشابه
Photocurrent Estimation for a Self-Reset CMOS Image Sensor
CMOS image sensors are capable of very high frame rate non-destructive readout. This capability and the potential of integrating memory and signal processing with the sensor on the same chip enable the implementation of many still and video imaging applications. An important example is dynamic range extension, where several images are captured during a normal exposure time — shorter exposure ti...
متن کاملNeural Monitoring With CMOS Image Sensors
Implantable image sensors have several biomedical applications due to their miniature size, light weight, and low power consumption achieved through sub-micron standard CMOS (Complementary Metal Oxide Semiconductor) technologies. The main applications are in specific cell labeling, neural activity detection, and biomedical imaging. In this paper the recent research studies on implantable CMOS i...
متن کاملMotion Compensated SNR and Dynamic Range Enhancement with Motion Blur Prevention using Multicapture
Most conventional digital cameras use single capture to get an image of the scene. If long exposuretime is used, not only bright regions in the scene saturate, but also motion blur causes furtherdegradation in the image quality. If short exposure time is used, motion blur problem is not thatsevere, but the SNR of the final image is poor. Recent work has shown the availability of...
متن کاملOptimization of Photodetector Thickness in Vertically-Integrated Image Sensors
There is an emerging interest in vertically-integrated CMOS (VI-CMOS) image sensors. This trend arises from the difficulty in achieving high SNR, high dynamic range, and high frame rate with planar technologies while maintaining small pixel sizes, since the photodetector and electronics have to share the same pixel area and use the same technology. Fabrication methods for VI-CMOS image sensors ...
متن کاملDetermination of the optimum filter for qualitative and quantitative 99mTc myocardial SPECT imaging
Background: Butterworth, Gaussian, Hamming, Hanning, and Parzen are commonly used SPECT filters during filtered back-projection (FBP) reconstruction, which greatly affect the quality and size accuracy of image. Materials and Methods: This study involved a cardiac phantom in which 1.10 cm thick cold defect was inserted into its myocardium wall and filled with 4.0 μCi/ml (0.148 MBq/ml) 99mTc conc...
متن کامل